SULJE VALIKKO

avaa valikko

Speech Enhancement - A Signal Subspace Perspective
55,20 €
Elsevier Science Publishing Co Inc
Sivumäärä: 138 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2014, 10.01.2014 (lisätietoa)
Kieli: Englanti
Speech enhancement is a classical problem in signal processing, yet still largely unsolved. Two of the conventional approaches for solving this problem are linear filtering, like the classical Wiener filter, and subspace methods. These approaches have traditionally been treated as different classes of methods and have been introduced in somewhat different contexts. Linear filtering methods originate in stochastic processes, while subspace methods have largely been based on developments in numerical linear algebra and matrix approximation theory.

This book bridges the gap between these two classes of methods by showing how the ideas behind subspace methods can be incorporated into traditional linear filtering. In the context of subspace methods, the enhancement problem can then be seen as a classical linear filter design problem. This means that various solutions can more easily be compared and their performance bounded and assessed in terms of noise reduction and speech distortion. The book shows how various filter designs can be obtained in this framework, including the maximum SNR, Wiener, LCMV, and MVDR filters, and how these can be applied in various contexts, like in single-channel and multichannel speech enhancement, and in both the time and frequency domains.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote
Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Speech Enhancement - A Signal Subspace Perspectivezoom
Näytä kaikki tuotetiedot
ISBN:
9780128001394


Toimitusehdot


Asiakaspalvelu


YHTEYSTIEDOT


SEURAA MEITÄ

Booky.fi | Kotimainen kirjakauppasi netissä

Löydä seuraava lukuelämyksesi meiltä. Valikoimassamme ovat kaikki kotimaiset kirjat sekä noin 25 miljoonaa ulkomaista teosta.
Toimitamme tilaukset maailmanlaajuisesti!

Tietosuojaseloste