The already broad range of applications of ring theory has been enhanced in the 1980s by the increasing interest in algebraic structures of considerable complexity, the so-called class of quantum groups. One of the fundamental properties of quantum groups is that they are modelled by associative co-ordinate rings possessing a canonical basis, which allows for the use of algorithmic structures based on Groebner bases to study them. This book develops these methods in a self-contained way, concentrating on an in-depth study of the notion of a vast class of non-commutative rings (encompassing most quantum groups), the so-called Poincare-Birkhoff-Witt rings. Included are algorithms which treat essential aspects like ideals and (bi)modules, the calculation of homological dimension and of the Gelfand-Kirillov dimension, the Hilbert-Samuel polynomial, primality tests for prime ideals, and so on.
Tämän tuotteen tilaamme kustantajalta tai tukkurilta varastoomme. Saatavuusarvio on tuotekohtainen. Lähetämme toimitusvahvistuksen heti, kun tuote on toimitettu varastoltamme rahdinkuljettajalle. Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa