Saat noutopistetoimituksen veloituksetta*, kun tilauksesi arvo ylittää 39 €!
*Koskee yksityisasiakkaiden tilauksia, jotka toimitetaan Suomeen.
|
|

avaa valikko

A Model Based Framework for Object Detection via Data Transformation
68,30 €
LAP Lambert Academic Publishing
Sivumäärä: 64 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2013, 12.12.2013 (lisätietoa)
Kieli: Englanti
The dynamic synthesis of nonlinear feature functions is a challenging problem in object detection. This book presents a combinatorial approach of genetic programming and the expectation maximization algorithm (GP-EM) to synthesize nonlinear feature functions automatically for the purpose of object detection. The EM algorithm investigates the use of Gaussian mixture which is able to model the behaviour of the training samples during an optimal GP search strategy. Based on the Gaussian probability assumption, the GP-EM method is capable of performing simultaneously dynamic feature synthesis and model-based generalization. The EM part of the approach leads to the application of the maximum likelihood (ML) operation which provides protection against inter-cluster data separation and thus exhibits improved convergence. The experimental results show that the approach improves the detection accuracy and efficiency of pattern object discovery, as compared to some state-of-the-art methods for object detection existing in the literature.

LISÄÄ OSTOSKORIIN
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Hankintapalvelu
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen.
Seuraa saatavuutta.
A Model Based Framework for Object Detection via Data TransformationSuurenna kuva
Näytä kaikki tuotetiedot
ISBN:
9783659494574
Kansikuva tuotteelle