Saat noutopistetoimituksen veloituksetta*, kun tilauksesi arvo ylittää 39 €!
*Koskee yksityisasiakkaiden tilauksia, jotka toimitetaan Suomeen.
|
|

avaa valikko

Multiple Classifier Systems : First International Workshop, MCS 2000 Cagliari, Italy, June 21-23, 2000 Proceedings
51,10 €
Springer
Sivumäärä: 408 sivua
Asu: Pehmeäkantinen kirja
Painos: 2000 ed.
Julkaisuvuosi: 2000, 14.06.2000 (lisätietoa)
Kieli: Englanti
Tuotesarja: Lecture Notes in Computer Science 1857
Many theoretical and experimental studies have shown that a multiple classi?er system is an e?ective technique for reducing prediction errors [9,10,11,20,19]. These studies identify mainly three elements that characterize a set of cl- si?ers: -Therepresentationoftheinput(whateachindividualclassi?erreceivesby wayofinput). -Thearchitectureoftheindividualclassi?ers(algorithmsandparametri- tion). - The way to cause these classi?ers to take a decision together. Itcanbeassumedthatacombinationmethodise?cientifeachindividualcl- si?ermakeserrors'inadi?erentway',sothatitcanbeexpectedthatmostofthe classi?ers can correct the mistakes that an individual one does [1,19]. The term 'weak classi?ers' refers to classi?ers whose capacity has been reduced in some way so as to increase their prediction diversity. Either their internal architecture issimple(e.g.,theyusemono-layerperceptronsinsteadofmoresophisticated neural networks), or they are prevented from using all the information available. Sinceeachclassi?erseesdi?erentsectionsofthelearningset,theerrorcorre- tion among them is reduced. It has been shown that the majority vote is the beststrategyiftheerrorsamongtheclassi?ersarenotcorrelated.Moreover, in real applications, the majority vote also appears to be as e?
cient as more sophisticated decision rules [2,13]. Onemethodofgeneratingadiversesetofclassi?ersistoupsetsomeaspect ofthetraininginputofwhichtheclassi?erisrather unstable. In the present paper,westudytwodistinctwaystocreatesuchweakenedclassi?ers;i.e.learning set resampling (using the 'Bagging' approach [5]), and random feature subset selection (using 'MFS', a Multiple Feature Subsets approach [3]). Other recent and similar techniques are not discussed here but are also based on modi?cations to the training and/or the feature set [7,8,12,21].

LISÄÄ OSTOSKORIIN
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tilaustuote

Tilaustuote

Tämän tuotteen tilaamme kustantajalta tai tukkurilta varastoomme. Saatavuusarvio on tuotekohtainen. Lähetämme toimitusvahvistuksen heti, kun tuote on toimitettu varastoltamme rahdinkuljettajalle.

Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Multiple Classifier Systems : First International Workshop, MCS 2000 Cagliari, Italy, June 21-23, 2000 ProceedingsSuurenna kuva
Näytä kaikki tuotetiedot
Kansikuva tuotteelle