Saat noutopistetoimituksen veloituksetta*, kun tilauksesi arvo ylittää 59 €!
*Koskee yksityisasiakkaiden tilauksia, jotka toimitetaan Suomeen.
|
|

avaa valikko

Bayesian Statistical Methods - With Applications to Machine Learning
129,00 €
Taylor & Francis Ltd
Sivumäärä: 348 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2026, 01.02.2026 (lisätietoa)
Kieli: Englanti
Bayesian Statistical Methods: With Applications to Machine Learning provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. Compared to others, this book is more focused on Bayesian methods applied routinely in practice, including multiple linear regression, mixed effects models and generalized linear models. This second edition includes a new chapter on Bayesian machine learning methods to handle large and complex datasets and several new applications to illustrate the benefits of the Bayesian approach in terms of uncertainty quantification.

Readers familiar with only introductory statistics will find this book accessible, as it includes many worked examples with complete R code, and comparisons are presented with analogous frequentist procedures. The book can be used as a one-semester course for advanced undergraduate and graduate students and can be used in courses comprising undergraduate statistics majors, as well as non-statistics graduate students from other disciplines such as engineering, ecology and psychology. In addition to thorough treatment of the basic concepts of Bayesian inferential methods, the book covers many general topics:



Advice on selecting prior distributions
Computational methods including Markov chain Monte Carlo (MCMC) sampling
Model-comparison and goodness-of-fit measures, including sensitivity to priors.

To illustrate the flexibility of the Bayesian approaches for complex data structures, the latter chapters provide case studies covering advanced topics:



Handling of missing and censored data
Priors for high-dimensional regression models
Machine learning models including Bayesian adaptive regression trees and deep learning
Computational techniques for large datasets
Frequentist properties of Bayesian methods.

The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets and complete data analyses is made available on the book’s website.

LISÄÄ OSTOSKORIIN
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tilaustuote

Tilaustuote

Tämän tuotteen tilaamme kustantajalta tai tukkurilta varastoomme. Saatavuusarvio on tuotekohtainen. Lähetämme toimitusvahvistuksen heti, kun tuote on toimitettu varastoltamme rahdinkuljettajalle.

Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Bayesian Statistical Methods - With Applications to Machine LearningSuurenna kuva
Näytä kaikki tuotetiedot
ISBN:
9781032486321
Kansikuva tuotteelle