Saat noutopistetoimituksen veloituksetta*, kun tilauksesi arvo ylittää 39 €!
*Koskee yksityisasiakkaiden tilauksia, jotka toimitetaan Suomeen.
|
|

avaa valikko

Practical TensorFlow.js - Deep Learning in Web App Development
56,10 €
APress
Sivumäärä: 303 sivua
Asu: Pehmeäkantinen kirja
Painos: 1st ed.
Julkaisuvuosi: 2020, 19.09.2020 (lisätietoa)
Kieli: Englanti
Develop and deploy deep learning web apps using the TensorFlow.js library. TensorFlow.​js​ is part of a bigger framework named TensorFlow, which has many tools that supplement it, such as TensorBoard​, ​ml5js​, ​tfjs-vis. This book will cover all these technologies and show they integrate with TensorFlow.​js​ to create intelligent web apps.
The most common and accessible platform users interact with everyday is their web browser, making it an ideal environment to deploy AI systems. TensorFlow.js is a well-known and battle-tested library for creating browser solutions. Working in JavaScript, the so-called language of the web, directly on a browser, you can develop and serve deep learning applications.You'll work with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN). Through hands-on examples, apply these networks in use cases related to image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysis.

Also, these topics are very varied in terms of the kind of data they use, their output, and the training phase. Not everything in machine learning is deep networks, there is also what some call shallow or traditional machine learning. While TensorFlow.js is not the most common place to implement these, you'll be introduce them and review the basics of machine learning through TensorFlow.js.
What You'll Learn



Build deep learning products suitable for web browsers

Work with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN)

Develop apps using image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysis


Who This Book Is For

Programmers developing deep learning solutions for the web and those who want to learn TensorFlow.js with at least minimal programming and software development knowledge. No prior JavaScript knowledge is required, but familiarity with it is helpful.

LISÄÄ OSTOSKORIIN
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tilaustuote

Tilaustuote

Tämän tuotteen tilaamme kustantajalta tai tukkurilta varastoomme. Saatavuusarvio on tuotekohtainen. Lähetämme toimitusvahvistuksen heti, kun tuote on toimitettu varastoltamme rahdinkuljettajalle.

Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Practical TensorFlow.js - Deep Learning in Web App DevelopmentSuurenna kuva
Näytä kaikki tuotetiedot
ISBN:
9781484262726
Kansikuva tuotteelle